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1. INTRODUCTION5

Recent improvements in z stacked imaging methods6

such as confocal laser scanning microscopy and light7

sheet fluorescence microscopy have made large and high8

quality datasets available for many biological objects of9

interest. These datasets are crucial for various applica-10

tions, including protein expression studies, blood vessel11

mapping, and nerve signal tracing. Because of the com-12

putational difficulty of rendering these datasets, their13

study is often restricted to those with access to high per-14

formance compute resources, in particular system mem-15

ory, with typical rendering techniques often requiring in16

the hundreds of gigabytes to hold the full models ef-17

ficiently. In this study, we focus on a three channel,18

volumetric 2056x2048x2022 dataset derived from a flu-19

orescence microscopy scan of a mouse heart Uhlén et al.20

(2015), where blood vessel walls and nerve fibers were21

stained. We present a preprocessing and segmentation22

pipeline that converts multi-channel fluorescence images23

into voxelized binary masks corresponding to structures24

of interest. Similar works have also attempted to seg-25

ment z stacked imaging on smaller datasets through26

varying segmentation methods. Zekri & Lang (2024)27

Our approach enables efficient downstream analysis and28

visualization of large-scale volumetric data on more29

modest computational hardware. This strategy facili-30

tates access to whole organ imaging datasets and sup-31

ports further analysis of complex biological structures.32

2. INSTRUMENTAL LIMITATIONS33

Multiplex immunohistochemistry and immunofluores-34

cence (mIHC/IF) are powerful techniques for visualizing35

multiple protein markers within tissue sections, enabling36

the detailed study of complex biological structures. In37

this study mIHC/IF were employed to visualize protein38

markers in tissue sections, with each image representing39

the summed average of several frames. This approach40

precluded the deconvolution of the exact point spread41

function. Because each fluorescent channel was captured42

separately, the resulting frames did not align perfectly in43

the z-axis, further complicating the accuracy of spatial44

registration. Additionally, variations in focus due to the45

tissue’s distance from the scanner caused a progressive46

loss of sharpness toward the periphery of each frame.47

A further complication arose from the heart wall, which48

trapped fluorescent chemicals during staining, leading to49

false-positive signals in the blood vessel scans. Finally,50

the intensity of each image varied, and there is an un-51

even illumination pattern within images, leading to in-52

consistent bright and dark portions of each slice. These53

factors necessitate significant pre-processing and require54

a more robust approach than an intensity threshold.55

3. DATA PIPELINE56

To reduce the data footprint while maintaining the full57

spatial accuracy, we first convert the multi-channel im-58

ages into voxelized binary masks containing only voxels59

which had the features of interest.60

3.1. Preprocessing61

We begin by normalizing the intensity values across62

the z-direction of the full dataset one channel at a time63

to reduce image to image intensity variance. This nor-64

malization helps ensure consistency across slices of the65

z-stack and mitigate any depth-dependent variations in66

signal intensity. Next, we apply an inverse hyperbolic67

sine (asinh) filter to stretch each slice, which effectively68

preserves relative intensity levels before we compress the69

dynamic range[fig.3]. We then apply a Contrast Lim-70

ited Adaptive Histogram Equalization Zuiderveld (1994)71

(CLAHE) to improve local contrast and flatten back-72

ground intensities. CLAHE operates by enhancing the73

contrast within small local regions of the image, which74

scales each local intensity to a standard range across the75

whole image, evening out the slice, and enhancing con-76

trast between background and fluorescing features[fig.2].77

To maximize the intensity flattening, we set the clipping78

limit to 0.01 and used a window size of 32x32 pixels.79
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Figure 1. Scaled image slice before CLAHE

Figure 2. Scaled image slice after CLAHE

Finally, we use a robust scaler to remove outliers and80

normalize the data to the final 0-255 greyscale range.81

3.2. U-Net82

For image segmentation, we use a 9-layer U-Net archi-83

tecture, which is well-suited for biomedical image seg-84

mentation tasks due to its ability to capture both lo-85

cal and global features Ronneberger et al. (2015). The86

model accepts input images of size 256x256 pixels. To87

prepare the original dataset, we tile the data slices into88

smaller 256x256 pixel tiles, which allows the model to89

handle high-resolution images efficiently. We manually90

segmented a small set of 32 tiles to create ground truth91

masks for training to test this model. This limited train-92

ing set was used to evaluate the feasibility of the ap-93

proach, a larger training dataset would likely increase94

performance. To supplement the size of the training95

set and improve model generalization, we applied stan-96

dard data augmentation like rotation, translation and97

noise generation. For training, we used Tversky-Focal98

loss as our loss function. This loss function is designed99

to handle class imbalance, where the background often100

dominates the foreground structures, like is the case for101

potentially single-pixel nerve fibers or capillaries. To im-102

Figure 3. 256x256 input to U-Net model

Figure 4. Manually labeled mask taken from the validation
set

Figure 5. Predicted mask for the same image

prove fitting performance we used a training loop with103

early stopping at loss plateauing, learning rate adap-104

tation for oscillating loss, and model checkpoints that105

save the best model based on loss values on the test set.106

Training was carried out on 50 epochs, and the early107

stopping filter did not trigger. We had a best fit at loss108

= 0.55, and training accuracy = 0.98. Despite achieving109

high overall accuracy, small structures such as capillaries110

and nerve fibers were not segmented effectively by the111

model. To address this issue, we applied a difference of112

median filter, which helped to enhance the segmentation113

of these finer structures.114

3.3. Difference of Medians115
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Figure 6. Zoomed section of a slice from the nerve fiber
imaging

To enhance medium-scale fluorescent structures in the116

grayscale images, we apply a difference-of-medians fil-117

tering approach designed to suppress both large-scale118

background features and high-frequency noise. For each119

image slice, we compute two median-filtered versions:120

one using a large kernel[fig.8] (15 × 15 pixels) and a121

second using a small kernel[fig.7] (3 × 3 pixels). The122

large-kernel median filter captures slowly varying, large-123

scale intensity components, such as organ boundaries124

and broad illumination gradients, while effectively av-125

eraging out smaller structures of interest. This filtered126

image therefore serves as an estimate of the local back-127

ground intensity. Subtracting the large-kernel median128

image from the original slice yields an intermediate im-129

age in which small- and medium-scale fluorescent fea-130

tures are emphasized relative to their local background.131

However, this operation also amplifies single-pixel noise132

artifacts and hot pixels, which exhibit high local con-133

trast and are not suppressed by the background sub-134

traction alone. To mitigate this effect, we compute a135

second residual by subtracting the small-kernel (3 × 3)136

median-filtered image from the original slice, producing137

an estimate of high-frequency noise. Finally, subtracting138

this noise estimate from the background-subtracted im-139

age suppresses isolated hot pixels while preserving con-140

tiguous medium-scale fluorescent structures[fig.9]. The141

resulting image preferentially highlights features of in-142

terest, such as capillaries and nerve fibers, while reduc-143

ing contributions from both large-scale background vari-144

ations and pixel-level noise.145

3.4. Postprocessing146

Following preprocessing and segmentation, both147

pipelines yield a volumetric stack of binary images rep-148

Figure 7. The small median image of the same slice (3x3)

Figure 8. The large median image of the same slice (15x15)

Figure 9. The subtracted I3 and I15
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Figure 10. The raw and pre-processed intensities of a 1d
slice of data through the x axis

resenting the structures of interest. Here, to take ad-149

vantage of the well-defined spatial format and to clean150

up the data, we apply a kerneled erosion/dilation filter.151

First, to connect structures over the sparser z axis, we152

used a 1x1x5 kernel in dilation then erosion for 5 itera-153

tions. Then, to connect the shapes across the xy axis,154

we use a standard 3x3x3 kernel dilation/erosion loop155

once. To enable efficient visualization and downstream156

analysis, these binary volumes are converted into an op-157

timized mesh representation with the marching cubes al-158

gorithm Lorensen & Cline (1987). The resulting meshes159

can be rendered efficiently on standard hardware and160

provide a compact representation of the original seg-161

mented volume. Finally, to reduce footprint even fur-162

ther and remove residual noise, we apply a number of163

faces filter, where any floating shape with fewer than 20164

faces was removed.165

4. RESULTS166

4.1. Preprocessing Results167

Applying intensity normalization and the asinh trans-168

form produced slices with consistent intensity profiles,169

reducing z-axis variation across the stack. Subsequent170

CLAHE effectively enhanced local contrast, making171

small fluorescent structures more distinct against back-172

ground tissue.173

Qualitatively, structures such as capillaries and nerve174

fibers were more visible post-processing, providing a175

more uniform input for segmentation. Quantitative in-176

tensity metrics indicated a reduction in inter-slice vari-177

ance[fig.11]. The detrended coefficient of variation de-178

creased from 0.42 to 0.28 over the average intensities179

of the images, demonstrating improved intensity homo-180

geneity.181

4.2. U-Net Feature Detection182

The 9-layer U-Net model demonstrated stable conver-183

gence over the full 50-epoch training process, achieving a184

Figure 11. Average intensity profiles across a subset of
slices before and after preprocessing. Preprocessing reduces
inter-slice variability while preserving large-scale structural
features.

Tversky-Focal Loss of 0.55 on the validation set. While185

the model achieved a high pixel-wise accuracy of 0.98,186

the Dice Coefficient of 0.29 (Dice Loss of 0.71) high-187

lights the challenge of segmenting fine, sparse structures.188

This discrepancy is likely due to the extreme class im-189

balance, where the background dominates the loss calcu-190

lation despite the use of Tversky-Focal weighting. Seg-191

mentation performance was strong for larger, contiguous192

structures, such as major blood vessels, which were con-193

sistently identified with well-defined boundaries across194

adjacent slices. However, smaller structures like capillar-195

ies, which are represented by small or even single-pixel196

values, were not well segmented. This limitation may be197

due to the loss function disproportionately prioritizing198

larger structures (comprising thousands of pixels) over199

smaller, sparse features. To address this, future work200

may introduce an additional class for capillaries, or fo-201

cus on expanding the training dataset, as typical U-Net202

implementations for similar biological imaging tasks of-203

ten utilize training sets of over 500 annotated images.204

In our study, we evaluated the method with a smaller205

set of 32 images, which likely contributed to the model’s206

difficulty in segmenting fine structures. To partially mit-207

igate this issue, we used the union of U-Net predictions208

with Difference of Medians masks to improve the seg-209

mentation of blood vessels.210

4.3. Difference of Medians211

The Difference of Medians approach worked well to212

remove noise and background features. Applying the213

filter decreased average image intensity from 11890 to214

1054, indicating a decrease in the image noise floor and215
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Figure 12. A one dimensional slice illustrating the medium-
scale feature detection by the Difference of Medians ap-
proach.

background structures. The average signal pixel value216

also went from 45672 to 16933, making a signal to noise217

increase from 3.8 to 16.0. Further, the signal peaks were218

both more well-defined and simpler to pick out with an219

intensity threshold. Though medium features were de-220

tected well, this method scales poorly to larger feature221

size band passes. With a time complexity of roughly222

O(n ·m · I2log(I)) Where I is the size of the large me-223

dian kernel, this method becomes infeasible for large224

features. Additionally, the median kernel will become225

less effective at selecting larger features as the feature226

contributes more pixels to the median kernel.227

5. APPLICATION AND FUTURE WORKS228

The final models produced by this pipeline enable ef-229

ficient visualization and analysis of the biological struc-230

tures on standard computational hardware. By convert-231

ing the segmented volumes into optimized mesh rep-232

resentations, we significantly reduce the computational233

footprint, allowing the models to be rendered and ex-234

plored on a variety of platforms. Both models fit within235

a single game file of under 1 GB, demonstrating the fea-236

sibility of running such large-scale biological datasets on237

modest systems. Figure 13 shows a connectivity analy-238

sis that is simple to perform with data in this format,239

showing potential utilities that would be impossible with240

the original dataset.241

Looking ahead, there are several avenues for further242

development and refinement. One simple improvement243

could be the implementation of a blind point spread de-244

convolution. Algorithms such as the Richardson Lucy245

transform have been modified to both derive a pseudo-246

psf and operate with a varying psf across an image.247

The U-Net model could include separate segmentation248

classes of larger vessels and smaller capillaries within the249

Figure 13. Connectivity analysis within the game engine.
By selecting all topologically connected faces, a single vascu-
lar ’tree’ can be isolated from the heart wall. This demon-
strates the pipeline’s ability to preserve structural continuity,
enabling future pathfinding and transport modeling.

model. Given the challenges faced in segmenting smaller250

structures, a separate class for small features could re-251

duce the impact of lopsided data. Additionally, increas-252

ing the size of the training dataset could improve model253

performance. Given that current U-Net implementa-254

tions for similar biological imaging tasks often rely on255

training sets with over 500 annotated images, a larger256

training dataset would likely yield better generalization257

and segmentation of small-scale features. There is also258

significant work on 3D U-Net implementations, which259

could leverage the z continuity of these structures for260

improved performance at the cost of a more complicated261

training data preparation and a higher memory cost in262

training.263

Furthermore, while the current dilation/erosion264

pipeline for postprocessing is effective, it remains a rel-265

atively simplistic method for bridging voxelized struc-266

tures. There is significant room for improvement in this267

area, as more sophisticated algorithms for voxel con-268

nectivity and structure bridging exist in graph-based or269

morphological techniques. These algorithms are being270

applied on similar datasets like neuron tracing to help271

improve the continuity and accuracy of segmented struc-272

tures, particularly in regions where adjacent structures273

are sparsely connected across slices.274

In summary, while the presented pipeline provides a275

functional and efficient means of segmenting and visual-276

izing large-scale biological datasets on modest computa-277

tional resources, further optimization and refinement of278

segmentation models, training sets, and postprocessing279

techniques will be necessary to address the challenges of280

segmenting smaller, more intricate structures and fur-281
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Figure 14. A screenshot of the nerve structure as it appears
in the game engine.

Figure 15. An image from within the heart of the blood
vessel channel.

ther enhance the utility of this method for biological282

research.283

6. DATA AND CODE284

• GitHub for Data Pipeline - https://github.com/285

Thomaslund1/Heart-Scan-Pipeline.git286

• GitHub for Demo Render Shown - https://github.287

com/Thomaslund1/Heart-Scan-Unity-Demo.git288

• Home of the Human Protein Atlas - https://www.289

proteinatlas.org/290
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