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Lightweight 3D Reconstruction of Large Fluorescence Microscopy Volumes via Statistical and Deep
Learning Segmentation
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1. INTRODUCTION

Recent improvements in z stacked imaging methods
such as confocal laser scanning microscopy and light
sheet fluorescence microscopy have made large and high
quality datasets available for many biological objects of
interest. These datasets are crucial for various applica-
tions, including protein expression studies, blood vessel
mapping, and nerve signal tracing. Because of the com-
putational difficulty of rendering these datasets, their
study is often restricted to those with access to high per-
formance compute resources, in particular system mem-
ory, with typical rendering techniques often requiring in
the hundreds of gigabytes to hold the full models ef-
ficiently. In this study, we focus on a three channel,
volumetric 2056x2048x2022 dataset derived from a flu-
orescence microscopy scan of a mouse heart Uhlén et al.
(2015), where blood vessel walls and nerve fibers were
stained. We present a preprocessing and segmentation
pipeline that converts multi-channel fluorescence images
into voxelized binary masks corresponding to structures
of interest. Similar works have also attempted to seg-
ment z stacked imaging on smaller datasets through
varying segmentation methods. Zekri & Lang (2024)
Our approach enables efficient downstream analysis and
visualization of large-scale volumetric data on more
modest computational hardware. This strategy facili-
tates access to whole organ imaging datasets and sup-
ports further analysis of complex biological structures.

2. INSTRUMENTAL LIMITATIONS

Multiplex immunohistochemistry and immunofluores-
cence (mIHC/IF) are powerful techniques for visualizing
multiple protein markers within tissue sections, enabling
the detailed study of complex biological structures. In
this study mIHC/IF were employed to visualize protein
markers in tissue sections, with each image representing
the summed average of several frames. This approach
precluded the deconvolution of the exact point spread
function. Because each fluorescent channel was captured
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separately, the resulting frames did not align perfectly in
the z-axis, further complicating the accuracy of spatial
registration. Additionally, variations in focus due to the
tissue’s distance from the scanner caused a progressive
loss of sharpness toward the periphery of each frame.
A further complication arose from the heart wall, which
trapped fluorescent chemicals during staining, leading to
false-positive signals in the blood vessel scans. Finally,
the intensity of each image varied, and there is an un-
even illumination pattern within images, leading to in-
consistent bright and dark portions of each slice. These
factors necessitate significant pre-processing and require
a more robust approach than an intensity threshold.

3. DATA PIPELINE

To reduce the data footprint while maintaining the full
spatial accuracy, we first convert the multi-channel im-
ages into voxelized binary masks containing only voxels
which had the features of interest.

3.1. Preprocessing

We begin by normalizing the intensity values across
the z-direction of the full dataset one channel at a time
to reduce image to image intensity variance. This nor-
malization helps ensure consistency across slices of the
z-stack and mitigate any depth-dependent variations in
signal intensity. Next, we apply an inverse hyperbolic
sine (asinh) filter to stretch each slice, which effectively
preserves relative intensity levels before we compress the
dynamic range[fig.3]. We then apply a Contrast Lim-
ited Adaptive Histogram Equalization Zuiderveld (1994)
(CLAHE) to improve local contrast and flatten back-
ground intensities. CLAHE operates by enhancing the
contrast within small local regions of the image, which
scales each local intensity to a standard range across the
whole image, evening out the slice, and enhancing con-
trast between background and fluorescing features|fig.2].
To maximize the intensity flattening, we set the clipping
limit to 0.01 and used a window size of 32x32 pixels.



Figure 1. Scaled image slice before CLAHE

Figure 2. Scaled image slice after CLAHE

s Finally, we use a robust scaler to remove outliers and

&1 normalize the data to the final 0-255 greyscale range.

=2

82 3.2. U-Net

ss  For image segmentation, we use a 9-layer U-Net archi-
s tecture, which is well-suited for biomedical image seg-
s mentation tasks due to its ability to capture both lo-
cal and global features Ronneberger et al. (2015). The
s model accepts input images of size 256x256 pixels. To
prepare the original dataset, we tile the data slices into
smaller 256x256 pixel tiles, which allows the model to
handle high-resolution images efficiently. We manually
segmented a small set of 32 tiles to create ground truth
e masks for training to test this model. This limited train-
s ing set was used to evaluate the feasibility of the ap-
w proach, a larger training dataset would likely increase
s performance. To supplement the size of the training
o set and improve model generalization, we applied stan-
o dard data augmentation like rotation, translation and
e noise generation. For training, we used Tversky-Focal
o0 loss as our loss function. This loss function is designed
w0 to handle class imbalance, where the background often
11 dominates the foreground structures, like is the case for
102 potentially single-pixel nerve fibers or capillaries. To im-
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Raw Image

Figure 4. Manually labeled mask taken from the validation
set

Predicted Mask

50 100

Figure 5. Predicted mask for the same image

103 prove fitting performance we used a training loop with
14 early stopping at loss plateauing, learning rate adap-
105 tation for oscillating loss, and model checkpoints that
106 save the best model based on loss values on the test set.
17 Training was carried out on 50 epochs, and the early
s stopping filter did not trigger. We had a best fit at loss
w9 = 0.55, and training accuracy = 0.98. Despite achieving
no high overall accuracy, small structures such as capillaries
m and nerve fibers were not segmented effectively by the
12 model. To address this issue, we applied a difference of
13 median filter, which helped to enhance the segmentation
us of these finer structures.
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115 3.3. Difference of Medians
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Figure 6. Zoomed section of a slice from the nerve fiber
imaging

To enhance medium-scale fluorescent structures in the
grayscale images, we apply a difference-of-medians fil-
tering approach designed to suppress both large-scale
background features and high-frequency noise. For each
image slice, we compute two median-filtered versions:
one using a large kernel[fig.8] (15 x 15 pixels) and a
second using a small kernel[fig.7] (3 x 3 pixels). The
large-kernel median filter captures slowly varying, large-
scale intensity components, such as organ boundaries
and broad illumination gradients, while effectively av-
eraging out smaller structures of interest. This filtered
image therefore serves as an estimate of the local back-
ground intensity. Subtracting the large-kernel median
image from the original slice yields an intermediate im-
age in which small- and medium-scale fluorescent fea-
tures are emphasized relative to their local background.
However, this operation also amplifies single-pixel noise
artifacts and hot pixels, which exhibit high local con-
trast and are not suppressed by the background sub-
traction alone. To mitigate this effect, we compute a
second residual by subtracting the small-kernel (3 x 3)
median-filtered image from the original slice, producing
an estimate of high-frequency noise. Finally, subtracting
this noise estimate from the background-subtracted im-
age suppresses isolated hot pixels while preserving con-
tiguous medium-scale fluorescent structures[fig.9]. The
resulting image preferentially highlights features of in-
terest, such as capillaries and nerve fibers, while reduc-
ing contributions from both large-scale background vari-
ations and pixel-level noise.

3.4. Postprocessing

Following preprocessing and segmentation, both
pipelines yield a volumetric stack of binary images rep-
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Figure 7. The small median image of the same slice (3x3)
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Figure 8. The large median image of the same slice (15x15)
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Figure 10. The raw and pre-processed intensities of a 1d
slice of data through the x axis

resenting the structures of interest. Here, to take ad-
vantage of the well-defined spatial format and to clean
up the data, we apply a kerneled erosion/dilation filter.
First, to connect structures over the sparser z axis, we
used a 1x1x5 kernel in dilation then erosion for 5 itera-
tions. Then, to connect the shapes across the xy axis,
we use a standard 3x3x3 kernel dilation/erosion loop
once. To enable efficient visualization and downstream
analysis, these binary volumes are converted into an op-
timized mesh representation with the marching cubes al-
gorithm Lorensen & Cline (1987). The resulting meshes
can be rendered efficiently on standard hardware and
provide a compact representation of the original seg-
mented volume. Finally, to reduce footprint even fur-
ther and remove residual noise, we apply a number of
faces filter, where any floating shape with fewer than 20
faces was removed.

4. RESULTS
4.1. Preprocessing Results

Applying intensity normalization and the asinh trans-
form produced slices with consistent intensity profiles,
reducing z-axis variation across the stack. Subsequent
CLAHE effectively enhanced local contrast, making
small fluorescent structures more distinct against back-
ground tissue.

Qualitatively, structures such as capillaries and nerve
fibers were more visible post-processing, providing a
more uniform input for segmentation. Quantitative in-
tensity metrics indicated a reduction in inter-slice vari-
ance[fig.11]. The detrended coefficient of variation de-
creased from 0.42 to 0.28 over the average intensities
of the images, demonstrating improved intensity homo-
geneity.

4.2. U-Net Feature Detection

The 9-layer U-Net model demonstrated stable conver-
gence over the full 50-epoch training process, achieving a
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Figure 11. Average intensity profiles across a subset of

slices before and after preprocessing. Preprocessing reduces
inter-slice variability while preserving large-scale structural
features.

Tversky-Focal Loss of 0.55 on the validation set. While
the model achieved a high pixel-wise accuracy of 0.98,
the Dice Coefficient of 0.29 (Dice Loss of 0.71) high-
lights the challenge of segmenting fine, sparse structures.
This discrepancy is likely due to the extreme class im-
balance, where the background dominates the loss calcu-
lation despite the use of Tversky-Focal weighting. Seg-
mentation performance was strong for larger, contiguous
structures, such as major blood vessels, which were con-
sistently identified with well-defined boundaries across
adjacent slices. However, smaller structures like capillar-
ies, which are represented by small or even single-pixel
values, were not well segmented. This limitation may be
due to the loss function disproportionately prioritizing
larger structures (comprising thousands of pixels) over
smaller, sparse features. To address this, future work
may introduce an additional class for capillaries, or fo-
cus on expanding the training dataset, as typical U-Net
implementations for similar biological imaging tasks of-
ten utilize training sets of over 500 annotated images.
In our study, we evaluated the method with a smaller
set of 32 images, which likely contributed to the model’s
difficulty in segmenting fine structures. To partially mit-
igate this issue, we used the union of U-Net predictions
with Difference of Medians masks to improve the seg-
mentation of blood vessels.

4.3. Difference of Medians

The Difference of Medians approach worked well to
remove noise and background features. Applying the
filter decreased average image intensity from 11890 to
1054, indicating a decrease in the image noise floor and
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Figure 12. A one dimensional slice illustrating the medium-
scale feature detection by the Difference of Medians ap-
proach.

a6 background structures. The average signal pixel value
217 also went from 45672 to 16933, making a signal to noise
218 increase from 3.8 to 16.0. Further, the signal peaks were
210 both more well-defined and simpler to pick out with an
220 intensity threshold. Though medium features were de-
2z tected well, this method scales poorly to larger feature
22 size band passes. With a time complexity of roughly
23 O(n - m - I*log(I)) Where I is the size of the large me-
24 dian kernel, this method becomes infeasible for large
s features. Additionally, the median kernel will become
26 less effective at selecting larger features as the feature
227 contributes more pixels to the median kernel.

228 5. APPLICATION AND FUTURE WORKS

29 The final models produced by this pipeline enable ef-
230 ficient visualization and analysis of the biological struc-
21 tures on standard computational hardware. By convert-
22 ing the segmented volumes into optimized mesh rep-
213 resentations, we significantly reduce the computational
21 footprint, allowing the models to be rendered and ex-
235 plored on a variety of platforms. Both models fit within
26 a single game file of under 1 GB, demonstrating the fea-
23 sibility of running such large-scale biological datasets on
233 modest systems. Figure 13 shows a connectivity analy-
230 sis that is simple to perform with data in this format,
20 showing potential utilities that would be impossible with
2n the original dataset.

22 Looking ahead, there are several avenues for further
23 development and refinement. One simple improvement
24 could be the implementation of a blind point spread de-
us convolution. Algorithms such as the Richardson Lucy
s transform have been modified to both derive a pseudo-
a7 pst and operate with a varying psf across an image.
xs The U-Net model could include separate segmentation
29 classes of larger vessels and smaller capillaries within the

Figure 13. Connectivity analysis within the game engine.
By selecting all topologically connected faces, a single vascu-
lar ’tree’ can be isolated from the heart wall. This demon-
strates the pipeline’s ability to preserve structural continuity,
enabling future pathfinding and transport modeling.

0 model. Given the challenges faced in segmenting smaller
21 structures, a separate class for small features could re-
22 duce the impact of lopsided data. Additionally, increas-
253 ing the size of the training dataset could improve model
»s performance. Given that current U-Net implementa-
25 tions for similar biological imaging tasks often rely on
6 training sets with over 500 annotated images, a larger
257 training dataset would likely yield better generalization
»s and segmentation of small-scale features. There is also
20 significant work on 3D U-Net implementations, which
x0 could leverage the z continuity of these structures for
21 improved performance at the cost of a more complicated
22 training data preparation and a higher memory cost in
23 training.

¢ Furthermore, while the current dilation/erosion
s pipeline for postprocessing is effective, it remains a rel-
x6 atively simplistic method for bridging voxelized struc-
27 tures. There is significant room for improvement in this
x%s area, as more sophisticated algorithms for voxel con-
nectivity and structure bridging exist in graph-based or
270 morphological techniques. These algorithms are being
on applied on similar datasets like neuron tracing to help
12 improve the continuity and accuracy of segmented struc-
a3 tures, particularly in regions where adjacent structures
o are sparsely connected across slices.

a5 In summary, while the presented pipeline provides a
a6 functional and efficient means of segmenting and visual-
a7 izing large-scale biological datasets on modest computa-
i tional resources, further optimization and refinement of
279 segmentation models, training sets, and postprocessing
20 techniques will be necessary to address the challenges of
21 segmenting smaller, more intricate structures and fur-
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Figure 14. A screenshot of the nerve structure as it appears
in the game engine.

Figure 15. An image from within the heart of the blood
vessel channel.

22 ther enhance the utility of this method for biological
283 research.
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6. DATA AND CODE
e GitHub for Data Pipeline - https://github.com/
Thomaslund1/Heart-Scan-Pipeline.git

e GitHub for Demo Render Shown - https://github.
com/Thomaslundl/Heart-Scan-Unity-Demo.git

e Home of the Human Protein Atlas - https://www.
proteinatlas.org/
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